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The instability behaviour of non-Newtonian liquid jets moving in an inviscid gaseous
environment is investigated theoretically for three-dimensional disturbances. The
corresponding dispersion relation between the wave growth rate and the wavenumber
is derived. Results for axisymmetrical non-Newtonian jets, the Newtonian jets, and
the inviscid jets are recovered, and it is shown that two-dimensional disturbances are
the most dangerous for the considered set of parameters.

1. Introduction
There is a considerable literature on the liquid jet instability, which is helpful in

understanding the mechanisms of the instability and breakup of jets (Bogy 1979;
Li 1995). Based on the linearized theory, Rayleigh (1878) gave a detailed analytical
explanation of inviscid liquid jets. In extending Rayleigh’s theory, Weber (1931)
proposed a linear theory for Newtonian liquid jets. Brenn, Liu & Durst (2000)
presented an axisymmetrical linear dispersion relation for non-Newtonian liquid jets.
The objective of this study is to derive a dispersion relation for a non-Newtonian
liquid jet with three-dimensional disturbances, and to investigate the corresponding
instability behaviour. The linearized stability analysis shows that the growth rate
of two-dimensional disturbances exceeds those of three-dimensional ones, and the
growth rates of three-dimensional disturbances decrease as the azimuthal directional
wavenumber increases in the investigated range of flow parameters.

2. Theory
We consider a cylindrical jet of non-Newtonian liquid of density ρ, surface tension

σ , and radius a moving at velocity Ū through an inviscid gas of density ρg . The
governing equations are written in a cylindrical coordinate system, with the z-axis
along the centreline of the jet.

2.1. Liquid phase velocity and pressure distribution

The governing equations of the liquid motion in a jet are the conservation laws of
mass and momentum:

∂t (ρ) + ∇ · ρv = 0, (1)

ρ(∂t + v · ∇)v = −∇ · π, (2)

† Author to whom correspondence should be addressed.
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where t is the time, v is the liquid velocity vector, and π is the total stress tensor of
the liquid, which is given by

π = pδ − τ , (3)

where p is the pressure of the liquid due to the disturbance, τ is the extra stress
tensor of the liquid, and δ is the unit tensor.

A corotational model is used by Bird, Armstrong & Hassager (1977), Park & Lee
(1995), Goren & Gottlieb (1982), Liu, Brenn & Durst (1998), and many others for
describing the viscoelastic liquid state. The following linearized equations are obtained
after neglecting the nonlinear terms:

∇ · v = 0, (4)

ρ(∂t + Ū∂z)v = −∇ · (pδ − τ ), (5)

τ + λ1(∂t + Ū∂z)τ = η0[γ̇ + λ2(∂t + Ū∂z)γ̇ ], (6)

where γ̇ is the strain tensor, η0 is the zero shear viscosity, λ1 is the stress relaxation
time, and λ2 is the deformation retardation time.

As the jet exits from the nozzle, the jet surface is always subjected to disturbances.
The equation for the jet surface disturbed by a small disturbance is

r = a + ξ, (7)

where r = a is the equilibrium position of the jet surface, and ξ is the displacement
of a point on the surface.

The flow field solutions of the above governing equations have to satisfy the
kinematic and dynamic boundary conditions at the gas–liquid interface, which can
be taken to be r = a (the first-order approximation for a small displacement of the
interface due to the disturbance). Boundary conditions at the interface express the
kinematic condition:

vr = (∂t + Ū · ∇)ξ, (8)

and the dynamic conditions:

(π − πg) × n = 0, (9)

(π − πg) · n + σ∇ · n = 0, (10)

where subscript g denotes the gas phase, σ is the surface tension, and n is the unit
vector normal to the gas–liquid interface, pointing into the gas phase.

When the jet is disturbed, the velocity vector v has three components:

v = v(r, θ, z, t) = [vr (r, θ, z, t), vθ (r, θ, z, t), vz(r, θ, z, t)]. (11)

Since we are interested in wave motion in the liquid, we seek the solutions for the
velocity vector v as periodic functions in z and θ , and complex exponential functions
in t:

v = V (r)ei(kz+nθ)+αt , (12)

where (k, n) is the wavenumber vector with k being the wavenumber of the disturbance
in the z-direction and n being integer, and α is a complex frequency (α = αr + iαi,
where αr represents the growth rate of the disturbance, αi is 2π times the disturbance
frequency, and −αi/k is the wave propagation velocity of the disturbance in the
direction of the liquid flow). From equation (12)

{vr, vθ , vz} = {Vr (r), Vθ (r), Vz(r)} ei(kz+nθ)+αt .
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Thus, the stress tensor τ , the strain tensor γ̇ , the pressure p, and the interface displace-
ment ξ are periodic functions in z and θ , and exponential functions in t , i.e.

{τ , γ̇ , p, ξ} = {T (r), Γ̇ (r), P (r), ξ0} ei(kz+nθ)+αt , (13)

where ξ0 is the initial amplitude of the disturbance, which is assumed to be much
smaller than the radius a of the jet in linear stability theory. It should be noted that
when n= 0, the interfacial waves on the jet surface correspond to an axisymmetrical
jet surface deformation with successive contractions and expansions in the radial
direction, and are regarded as varicose waves.

Substituting the above definitions into the linearized governing equations, and
expressing the velocity vector in suitable component form, the following continuity
and momentum equations are abtained:

1

r
∂r (rVr ) +

1

r
inVθ + ikVz = 0, (14)

ρ(α + ikŪ )Vr = −∂rP + η(α, n, k){∂r [r
−1∂r (rVr )] − r−2n2Vr − 2r−2inVθ − k2Vr},

(15)

ρ(α + ikŪ )Vθ = −r−1inP + η(α, n, k){∂r [r
−1∂r (rVθ )] − r−2n2Vθ + 2r−2inVr − k2Vθ},

(16)

ρ(α + ikŪ )Vz = −ikP + η(α, n, k){r−1∂r [r∂r (Vz)] − r−2n2Vz − k2Vz}, (17)

where

η(α, n, k) = η0

1 + λ2(α + ikŪ )

1 + λ1(α + ikŪ )
.

The corresponding boundary conditions can be linearized in the same manner as the
governing equations. To first order, at r = a, they are

Vr = (α + ikŪ )ξ0, (18)

∂rVz + ikVr = 0, (19)

r∂r (r
−1Vθ ) + r−1inVr = 0, (20)

πrr − πg,rr +pσ = 0, (21)

where πrr is the liquid normal stress, πg,rr is the gas normal stress, and pσ is the
pressure induced by the surface tension. Moreover, the velocity components along the
jet axis, i.e. at r = 0, must be finite.

Solving the above differential equations and applying the boundary conditions, the
final forms of the velocity and pressure profiles in the liquid (r � a) are

p =
ρ(α + ikŪ )2

kA

[
l2 + k2

2k2
A1 − A2

]
In(kr)

I ′
n(ka)

ξ0e
i(kz+nθ)+αt , (22)

vr =
(α + ikŪ )

A

[
(A1 − A3)

I ′
n(lr)

I ′
n(la)

+

(
l2 + k2

2k2
A3 − A2

)
2a

r

I ′
n(lr)

In(la)

−
(

l2 + k2

2k2
A1 − A2

)
I ′
n(kr)

I ′
n(ka)

]
ξ0e

i(kz+nθ)+αt , (23)
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vθ = in
(α + ikŪ )

A

[
(A1 − A3)

1

lr

In(lr)

I ′
n(la)

+
2la

n2

(
l2 + k2

2k2
A3 − A2

)
I ′
n(lr)

In(la)

−
(

l2 + k2

2k2
A1 − A2

)
1

kr

In(kr)

I ′
n(ka)

]
ξ0e

i(kz+nθ)+αt , (24)

vz = i
(α + ikŪ )

A

[
l

k
(A1 − A3)

In(lr)

I ′
n(la)

−
(

l2 + k2

2k2
A1 − A2

)
In(kr)

I ′
n(ka)

]
ξ0e

i(kz+nθ)+αt , (25)

where In(kr) is the nth-order modified Bessel function of the first kind,

A1 = 1 − la

n2

I ′
n(la)

In(la)
+

l2a2

n2

I ′′
n (la)

In(la)
, A2 = 1 − 1

la

In(la)

I ′
n(la)

, A3 = 1 − 1

ka

In(ka)

I ′
n(ka)

,

A =
l2

k2
A3 − A2 − l2 − k2

2k2
A1,

l2 = k2 +
ρ(α + ikŪ )

η(α, n, k)
.

2.2. Gas-phase velocity and pressure distribution

In the present analysis the gas around the moving liquid jet is assumed to be inviscid,
and it moves at a velocity Ūg in the same direction as the flow of the liquid jet.
Similarly to the liquid phase, the governing equations for the gas phase are expressed
as follows:

1

r
∂r (rVr,g) +

1

r
inVθ,g + ikVz,g = 0, (26)

ρg(α + ikŪg)Vr,g = −∂rPg, (27)

ρg(α + ikŪg)Vθ,g = −r−1inPg, (28)

ρg(α + ikŪg)Vz,g = −ikPg, (29)

where equation (26) is the gas-phase continuity equation, and equations (27)–(29) are
the gas-phase momentum equations. The boundary conditions for the gas phase are

Vr,g = (α + ikŪg)ξ0, r = a, (30)

Vr,g → 0, r → ∞. (31)

The same calculation as for the liquid phase leads to the final form of the profiles
of the pressure and three velocity components in the gas phase (r � a):

pg = −ρg

k

(α + ikŪg)
2

K ′
n(ka)

Kn(kr)ξ0 ei(kz+nθ)+αt , (32)

vr,g =
(α + ikŪg)

K ′
n(ka)

K ′
n(kr)ξ0 ei(kz+nθ)+αt , (33)

vθ,g =
in

k

(α + ikŪg)

K ′
n(ka)

1

r
Kn(kr)ξ0 ei(kz+nθ)+αt , (34)

vz,g = i
(α + ikŪg)

K ′
n(ka)

Kn(kr)ξ0 ei(kz+nθ)+αt , (35)

where Kn(kr) is the nth-order modified Bessel function of the second kind.
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2.3. Dispersion relation

Substituting the expressions found for πrr , πg,rr , and pσ into the normal stress
boundary condition (21) for r = a yields the following dispersion relation:

ρ(α + ikŪ )2

A

{
4

a(l2 − k2)

[
l2 + k2

2k2
A3 − A2

][
la

I ′′
n (la)

In(la)
− I ′

n(la)

In(la)

]
+

2l(A1 − A3)

l2 − k2

I ′′
n (la)

I ′
n(la)

−1

k

[
l2 + k2

2k2
A1 − A2

][
In(ka)

I ′
n(ka)

+
2k2

l2 − k2

I ′′
n (ka)

I ′
n(ka)

]}
− ρg(α + ikŪg)

2

k

Kn(ka)

K ′
n(ka)

=
σ

a2
(1 − k2a2 − n2). (36)

Equation (36) relates the wave growth rate α to the wavenumbers k and n, but its
solution is complicated by the fact that parameter l is still a function of α.

For an axisymmetrical non-Newtonian liquid jet (two-dimensional disturbances),
n= 0, the dispersion relation reduces to the form obtained by Brenn et al. (2000):

(α + ikŪ )2 +
2k2η0

ρ

1 + λ2(α + ikŪ )

1 + λ1(α + ikŪ )

[
I ′
1(ka)

I0(ka)
− 2kl

l2 + k2

I1(ka)

I0(ka)

I ′
1(la)

I1(la)

]
(α + ikŪ )

− ρg

ρ

l2 − k2

l2 + k2

K0(ka)

K ′
0(ka)

I1(ka)

I0(ka)
(α + ikŪg)

2 =
σk

ρa2

l2 − k2

l2 + k2
(1 − k2a2)

I1(ka)

I0(ka)
. (37)

When λ1 = λ2 = 0, the jet of a non-Newtonian fluid is transformed into that of a
Newtonian fluid (at this condition η0 =µ, where µ= νρ is the dynamic viscosity of
the Newtonian fluid, and ν is the kinematic viscosity of the Newtonian fluid), and the
dispersion relation (37) reduces to the results for a Newtonian fluid jet obtained by
Weber (1931):

(α + ikŪ )2 + 2νk2

[
I ′
1(ka)

I0(ka)
− 2kl

l2 + k2

I1(ka)

I0(ka)

I ′
1(la)

I1(la)

]
(α + ikŪ )

− ρg

ρ

l2 − k2

l2 + k2

K0(ka)

K ′
0(ka)

I1(ka)

I0(ka)
(α + ikŪg)

2 =
σk

ρa2

l2 − k2

l2 + k2
(1 − k2a2)

I1(ka)

I0(ka)
. (38)

When the gas velocity, gas density and liquid viscosity vanish, equation (38) reduces
to the famous result due to Rayleigh (1878) for an inviscid liquid jet with negligible
gas effects:

(α + ikŪ )2 =
σk

ρa2
(1 − k2a2)

I1(ka)

I0(ka)
. (39)

From the above derivations, it is seen that the three-dimensional non-Newtonian
liquid jet dispersion relation recovers dispersion relations for axisymmetrical non-
Newtonian, Newtonian, and inviscid jets, thus confirming the validity of the present
three-dimensional linear solution.

3. Results
The above dispersion relation for a non-Newtonian liquid jet, equation (36), can

be expressed in non-dimensional form as (using a as the length scale and a/Ū as the
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time scale):

Ω2
1

A

{
4

L2 − K2

[
L

I ′′
n (L)

In(L)
− I ′

n(L)

In(L)

] [
L2 + K2

2K2
A3 − A2

]
+

2L

L2 − K2

I ′′
n (L)

I ′
n(L)

(A1 − A3)

− 1

K

[
In(K)

I ′
n(K)

+
2K2

L2 − K2

I ′′
n (K)

I ′
n(K)

] [
L2 + K2

2K2
A1 − A2

]}
− ρ̃Ω2

2

K

Kn(K)

K ′
n(K)

= (1 − K2 − n2), (40)

where

L = la, A1 = 1 − L

n2

I ′
n(L)

In(L)
+

L2

n2

I ′′
n (L)

In(L)
, A2 = 1 − 1

L

In(L)

I ′
n(L)

, A3 = 1 − 1

K

In(K)

I ′
n(K)

,

A =
L2

K2
A3 − A2 − L2 − K2

2K2
A1, L2 = K2 +

Ω1

Z

Z + El(Ω + iKZ Re)

Z + λ̃El(Ω + iKZ Re)
,

Ω1 = Ω + iK(We)1/2, Ω2 = Ω + iKŨ (We)1/2, Ω = Ωr + i(We)1/2Ωi,

where Ωr = αr/(σ/ρa3)1/2 is the non-dimensional growth rate, Ωi = αi(a/Ū ) is the non-
dimensional disturbance frequency, K = ka is the non-dimensional (real) wavenumber,
ρ̃ = ρg/ρ is the ratio of gas to liquid density, Ũ = Ūg/Ū is the gas to liquid velocity

ratio, λ̃= λ2/λ1 is the ratio of deformation retardation time to stress relaxation time.
The liquid Weber number is defined as We= ρŪ 2a/σ , the Reynolds number is defined
as Re = ρŪa/η0, the Ohnesorge number is defined as Z = η0/(ρσa)1/2, the elasticity
number is defined as El = λ1η0/ρa2.

The instability of liquid jets corresponds to positive values of the disturbance growth
rate (i.e. αr > 0 or Ωr > 0), and the growth rate of disturbances on liquid jets can
be obtained through solving the corresponding dispersion relations above by using a
secant method developed by Muller (1956). It has been proved that Muller’s method
can be used to find real or complex zeros of a function and can be programmed to
use complex arithmetic. Figure 1 shows the non-dimensional wave growth rate Ωr

of three-dimensional disturbance waves on non-Newtonian liquid jets as a function
of the non-dimensional wavenumber K at Z =0.1, Re= 1000, We =10000, El = 0.1,
λ̃= 0.5, ρ̃ = 0.001, and Ūg = 0. The three-dimensional results are obtained from the
dispersion relations with the value of the azimuthal direction wavenumbers n= 1, 2,
and 3, and the two-dimensional results are attained from the dispersion relations with
n=0. It should be noted that any value of the wavenumber n other than zero would
correspond to a disturbance component in the azimuthal direction and thus cause the
disturbance to be three-dimensional.

It is observed from figure 1 that the growth rate of the two-dimensional disturbance
exceeds those of the three-dimensional disturbances for the given conditions. However,
it should be noted that for small wavenumbers, the growth rate for n= 1 is larger
than that for n= 0. Further, the three-dimensional disturbances corresponding to
n=1 have a higher growth rate than those with n= 2, and the growth rate of
three-dimensional disturbances with n= 2 is higher than that of three-dimensional
disturbances with n= 3. Goldin et al. (1969) reached a similar conclusion in their
instability investigations of liquid jets.

From inspection of the shapes of the growth rates of different disturbance waves
in figure 1, it is seen that for relatively small wavenumbers, the two-dimensional
growth rate curve is convex, and the three-dimensional growth rate curves are always
concave. It is clear that when n increases both the maximum growth rates and the
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Figure 1. Wave growth rate Ωr of disturbances on non-Newtonian liquid jets versus
wavenumber K at Z = 0.1, Re= 1000, We =10000, El= 0.1, λ̃= 0.5, ρ̃ = 0.001 and Ūg = 0.

dominant wavenumbers decrease. In the conditions of figure 1, the disturbances for
n> 3 are stable (Ωr < 0).

The cutoff wavenumber is the value where the growth rate curve crosses the wave-
number axis in the plot of wave growth rate versus wavenumber. From inspection of
figure 1, the most obvious difference between two- and three-dimensional disturbances
is that, in addition to an upper cutoff wavenumber, three-dimensional disturbances
exhibits a lower cutoff wavenumber. Below the lower cutoff or above the upper cutoff,
the growth rates are negative, and the liquid jet is stable. A non-zero lower cutoff
wavenumber exists for all three-dimensional disturbances with n> 1, and increases
with n, whereas the upper cutoff wavenumber decreases with n. This is characteristic
of three-dimensional instability of non-Newtonian liquid jets. From figures 1 and
2 it is also evident that for the given flow conditions the maximum growth rate
Ωr,m and the corresponding dominant wavenumber Kd decrease as the azimuthal
direction wavenumber increases, and that when the azimuthal direction wave number
n is greater than some value (here n= 3), the three-dimensional disturbances become
stable.

Figure 3 shows the non-dimensional wave growth rate Ωr of disturbances on
different liquid jets versus the non-dimensional wavenumber K at Z = 0.1, El =0.1,
Re = 1000, λ̃= 0.5, ρ̃ = 0.001, n= 0, and Ūg = 0. It can be seen that the growth rate
of disturbances on a non-Newtonian liquid jet is larger than that on a Newtonian
and smaller than that on an inviscid jet, so that, in the investigated range of flow
conditions, a jet of non-Newtonian liquid is more unstable than a Newtonian jet.
While Newtonian jets appear rigid, non-Newtonian jets have the additional freedom
for elastic deformation (Brenn et al. 2000). Similar results were reported by Goldin
et al. (1969). It is inferred that any experimentally observed difference in the breakup
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Figure 2. Effects of the azimuthal direction wavenumber n on maximum growth rate Ωr,m and
dominant wavenumber Kd of disturbances on non-Newtonian liquid jets at Z = 0.1, Re= 1000,
We= 10000, El =0.1, λ̃= 0.5, ρ̃ =0.001, and Ūg = 0.
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Figure 3. Wave growth rate Ωr of disturbances on different liquid jets versus wavenumber
K at Z = 0.1, Re =1000, We = 10000, El= 0.1, λ̃=0.5, ρ̃ = 0.001, n= 0, and Ūg = 0.
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behaviour of liquid jets must be due to nonlinear effects. Goldin et al. (1969) came
to the same conclusion.

4. Conclusions
In this paper we have derived the dispersion relation between the growth rate and

the wavenumber of non-Newtonian jets with three-dimensional disturbances and
shown that the results for the axisymmetrical non-Newtonian, the Newtonian, and the
inviscid jets can be recovered by taking the appropriate limits. It has been found that
the growth rate of two-dimensional disturbances exceeds those of three-dimensional
ones, and that the growth rates of three-dimensional disturbances decrease as the
azimuthal direction wavenumber increases in the investigated range of flow para-
meters. Finally, non-Newtonian liquid jets were seen to be more unstable than the
corresponding Newtonian ones, thus confirming previous results (Brenn et al. 2000;
Goldin et al. 1969). It is therefore hoped that the present three-dimensional linear
theory can provide a good foundation for further investigation of the behaviour of
non-Newtonian liquid jets in the general case.
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